
Designing a Rubric for Feedback on
Code Quality in Programming Courses

Martijn Stegeman
University of Amsterdam &

Open University,
The Netherlands

martijn@stgm.nl

Erik Barendsen
Radboud University &

Open University,
The Netherlands

e.barendsen@cs.ru.nl

Sjaak Smetsers
Radboud University,

The Netherlands
s.smetsers@cs.ru.nl

ABSTRACT
We investigate how to create a rubric that can be used to
give feedback on code quality to students in introductory
programming courses. Based on an existing model of code
quality and a set of preliminary design rules, we constructed a
rubric and put it through several design iterations. Each iter-
ation focused on different aspects of the rubric, and solutions
to various programming assignments were used to evaluate.
The rubric appears to be complete for the assignments it was
tested on. We articulate additional design aspects that can
be used when drafting new feedback rubrics for programming
courses.

CCS Concepts
• General and reference → Design; • Social and pro-
fessional topics → CS1; Student assessment; Software
engineering education;

Keywords
Programming education, Code quality, Feedback, Assess-
ment, Rubrics

1. INTRODUCTION
Code quality is an aspect of software quality that concerns
directly observable properties of source code. Software en-
gineers and researchers have shown a particular interest in
improving the internal quality of software, assuming that
this will have a positive effect on the external quality as
experienced by users [10]. Teachers in the field of computer
science, in turn, have increasingly provided students with
feedback on the quality of their solutions to programming
assignments. However, enrolments for introductory program-
ming courses began to surge as early as two decades ago [18],
with time to produce feedback growing proportionally. This
has prompted the introduction of teaching models where
teaching assistants play a prominent role; for example, [24].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Koli Calling 2016, November 24 - 27, 2016, Koli, Finland
c© 2016 Copyright held by the authors. Publication rights licensed to ACM. ISBN

978-1-4503-4770-9/16/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2999541.2999555

These factors have engendered active research among teach-
ers to develop tools that systematize and automate feedback,
aiming to ease teaching loads and to provide consistency and
timeliness in grading, as well as in feedback. One approach is
to create detailed grading schemes, to be used by any combi-
nation of teachers, assisstants, and students. Several grading
schemes have been published [5, 7, 2, 21, 3], but while all
of these focus on similar aspects of code quality, such as
readability, style and decomposition, they are very diverse
in form as well as in content. Our goal is to understand how
to create such a grading scheme in a systematic fashion and
what design principles emerge from this process. In earlier
work [22], we have created a detailed model of code quality
as it applies to early programming courses (using languages
from the imperative paradigm). That model is based on
empirical data: the contents of several books on code quality,
as combined with norms in use by teachers of introductory
programming courses. In this study, we describe the first
steps towards using that model to design a rubric that helps
articulate feedback for students. We also describe the design
aspects that appear to be relevant for this type of rubric.

2. FEEDBACK AND RUBRICS
Feedback given to students in a course can be used to promote
learning [6]. In order to learn, a student needs to know three
things: what good performance on a task is; how their own
performance relates to good performance; and what to do to
close the “gap” between those [20].

where I am now where I need to go

how to get there

Figure 1: Feedback components from [20]. The
horizontal line forms a scale of achievement.

A rubric is a tool that helps the assessment of student work
by defining a set of criteria, a number of levels of accom-
plishment, and optionally verbal descriptors that explain the
various levels [19]. Such a rubric can be used to calculate
grades, to provide feedback, or both [9]. Rubrics were once
developed to perform a summative assessment by quickly
ranking or scoring, without providing content-related feed-
back [4]. However, they can be augmented to function as a
tool for formative assessment, where they are used to pro-
vide feedback to students who can use it to improve their
performance. Andrade [1] argues for an instructional rubric,

http://dx.doi.org/10.1145/2999541.2999555

primarily designed as a teaching tool instead of a scoring
tool. Such rubrics prominently feature the verbal descriptors,
which become the focal point of the assessment process. The
key idea here is that students can use the rubric to under-
stand what is important for good performance on the task
at hand: it provides transparency [8]. This is achieved by
designing criteria, levels and descriptors in such a way that
students can use the rubric to figure out the three things they
need to know to learn (cf. Figure 1). Introducing rubrics may
not directly cause the desired learning effect, as there are
many mediating and moderating factors. Still, many positive
results have been reported after introducing of rubrics in the
classroom [15].

2.1 Rubric design principles
Literature provides best practices for several aspects of cre-
ating rubrics. We list principles for three important aspects.

Rubrics can be either general purpose or task-specific.
General purpose rubrics can be used across a range of assign-
ments or even courses, while task-specific rubrics are fully
aligned to the particular requirements of an assignment. A
general purpose rubric can be used as a long-term learning
tool, assuming that understanding will develop as the rubric
is used repeatedly by students [23]. Messick [12] suggests to
aim for a middle ground that is representative for a class of
tasks.

Deliberately choosing the number of achievement levels
in a rubric is especially relevant to instructional rubrics.
Sadler [20] argues that many levels have to be defined. This
should help student motivation by allowing them to see the
results of their progress, compared to simply getting a pass
or fail result. A more practical matter is that the number
of criteria should preferably be even, as graders tend to
bias to a middle level when the rubric is used by multiple
graders [25]. For a rubric to be used by many teachers, four
levels is recommended by Walvoord [25].

Rubrics can be augmented or replaced by exemplars; these
are partial products that represent a particular level of ac-
complishment. Rubrics without exemplars seem to improve
learning more than when using both, or solely exemplars [11].

2.2 Rubric quality
Rubric quality can be evaluated using concepts and tech-
niques derived from psychological test construction. There,
reliability shows whether a test can consistently provide the
same results, and validity shows to what extent a test covers
what it is intended to measure. Moskal and Leydens [14]
propose how to apply this to rubrics. Content-related evi-
dence should show that the rubric covers all relevant aspects
of the domain; construct-related evidence should show that
results of assessment using the rubric are representative for
student performance and do not, for example, take irrele-
vant aspects into account; criterion-related evidence should
show that student performance would translate to an outside
setting. Besides that, interrater and intrarater reliability
should show that no unwanted variation in the assessment
is present. Jonsson and Svingby [9] show that these aspects
are evaluated in various ways in rubric studies.

3. METHOD
The model of code quality from our earlier work [22] aims to
be applicable to university programming courses. Our ques-
tion is: how can we use this theoretical model to construct a

rubric that is useful for assessing code quality in introductory
programming courses? The method for answering this ques-
tion is an implementation of educational design research. Like
other design strategies, this methodology follows an iterative
path [16]. During multiple cycles, educational interventions
are developed and the results of testing the interventions
are studied. Any cycle brings forth two types of results: a
tentative product, and tentative design principles. During
further cycles, these principles are tested in the development
of new versions of the product.

In the case of this preliminary study, we aim to find a first
set of design principles that help construct a valid rubric.
From the start, one part of validity is derived from the under-
lying model of code quality: it is assumed to be reasonable
complete for introductory programming courses. However,
condensing the model into a rubric compels us to make
choices about what to include and what to leave out.

Broadly speaking, one can distinguish four phases in a
design cycle: (i) problem identification and analysis (ii) col-
lecting initial design guidelines and creating a prototypical
intervention (iii) several iterations of testing and refinement
(iv) deriving design principles [17]. We have described the
first phase in previous paragraphs, and will now describe
how we approached the design.

We created an initial prototype of the rubric using design
principles from literature. In three iterations, the rubric was
subjected to trial assessments and results were discussed with
teachers (Table 1). In all cases, the rubric was used with stu-
dent work, written in response to programming assignments.
Each iteration had a different focus: the first iteration was
a basic understandability check, with a single teacher who
had not used the rubric before; the second iteration aimed
to test completeness, with three teachers who mostly had
no experience with the rubric, thereby providing content-
related evidence for validity; the third iteration aimed to find
structural problems, possibly originating in the underlying
model, thereby providing construct-related evidence for valid-
ity. This final iteration was performed with help of a teacher
who had extensive experience using an earlier version of the
rubric. We used different platforms and assignments, some
allowing for decomposition and modularization (Table 2).
After the three iterations, we analyzed the changes made to
the rubric to propose aspects that are relevant for further
development. Further detail on the method used in each step
is provided in the next section.

round # participants experience

1 1 none
2 3 none
3 1 extensive

Table 1: Evaluation participants by iteration.

round platform decomposition modularization

1 C no no
2 C yes no
3 iOS yes yes

Table 2: Assignment language by iteration.

4. RUBRIC DESIGN

Initial design
We constructed a rubric by a defining a set of criteria, for-
mulating a number of levels of accomplishment, and writing
verbal descriptors that explain the various levels. We derived
the nine criteria from our code quality model [22]. We chose
to define four levels of accomplishment, given that we aim
for the rubric to be usable in many programming courses.
To create a simple progression, we chose the following defini-
tions for each: (i) problematic features are present (ii) core
quality goals not yet achieved (iii) core quality goals achieved
(iv) achievement beyond core quality goals. To create an
instructional rubric that can facilitate learning, we wrote
descriptors that help understand differences between levels
of achievement1.

Iteration 1
Assignment and participants — We subjected the initial
version of the rubric to a basic test by asking one teacher
to assess 5 student-submitted C programs using it. The
goal was to eliminate any basic mistakes in the design of
the rubric. All programs were produced in response the
same assignment; no code framework was given to students,
but hints and tips on the approach were given in the de-
scription; because of the nature of the assignment, students
were generally not expected to perform any decomposition
or modularization; the solutions were anonymized; and the
teacher was experienced with this assignment, but had not
graded these particular solutions before.
Method details — We first asked the teacher to think
aloud while assessing the programs without using the rubric
and to write down 2—3 suggestions for improvement for each
student. We then asked them to use the rubric for a second
assessment of all programs and indicate the perceived level
for each criterion. Finally, we talked through all results. The
teacher was asked to reflect on similarities and differences
between their own feedback and the feedback that they
indicated in the rubric.
Results and changes — As expected, the modularization
criterion was not used for any of the solutions. Although there
was also no realistic opportunity for decomposition in this
assignment, the teacher was able to classify the performance
at lower levels. There was a need for some corrections and
clarifications, but no change in levels or arrangement of
criteria. For names, the word “fuzzy” could be removed as
its meaning was unclear and irrelevant; also for names, the
concept of consistent casing was added (this concept was
indeed present in the empirical data from the model, but had
not been added to the rubric); for formatting, the goal of
consistency was added explicitly; for flow, the term “choice
of libraries” was explained more clearly as “use of library
functions”.

Iteration 2
Assignment and participants — To more thoroughly
evaluate the second version we asked three teachers to use
the rubric to assess two solutions to a programming problem.
This problem again asked for a solution in C, but this time
a basic framework was offered to students; the students were
expected to decompose their solution code when needed, but

1All versions of the rubric are available on stgm.nl/quality

there was no opportunity for modularization; the solutions
were anonymized; one of the teachers was the teacher that
also participated in the first round; and the teachers were all
experienced with the assignment, but each had not graded
the provided solutions before.
Method details — In this evaluation, we asked the teachers
to write down feedback on the program without discussing
and without use of the rubric; we also asked them to provide
two important code quality goals for the student based on
their assessment. Then we discussed the rubric by talking
through each separate criterion and providing clarifications
when asked. Then, the teachers assessed both student solu-
tions using the rubric. Finally, the teachers discussed if their
important goals were also present in the rubric, and were
asked to identify any further problems that they encountered.
Results and changes — As in the first iteration, the mod-
ularization criterion was not used. This iteration provided
input for a limited number of significant changes to the
rubric. Lines of code that are too long appeared to be seen
as a problem with formatting and not overall layout ; we
moved this item to the formatting criterion; in the rubric,
layout was said to be about the “arrangement of code in
source files”, but it appeared quite unclear what was meant
by that phrasing; we replaced this by using “positioning of
elements in source files”; the teachers noted and agreed on a
separation between having old code that is “commented out”
and code that is simply unreachable given the structure of
the program; these two were separated, moving unreachable
code to the flow criterion; on the other hand, the flow crite-
rion seemed to encompass two different parts: the control of
complexity and the appropriate use of control structures and
library functions; as these goals were already formulated in
a very isolated fashion, we split off the latter into a separate
criterion named “idiom”.

Iteration 3
Assignment and participants — For the final in-depth
evaluation of the rubric, one teacher was asked to assess
seven student projects written in Swift using the iOS frame-
work. The students were expected to use decomposition and
modularization, and solutions were generally composed of 10
or more classes; the projects were anonymized, and this was
the first assessment of the projects; the teacher had used the
initial version of the rubric about 6 months earlier to assess
different student projects. Our goal was to elicit information
about potential problems in all criteria and all levels of the
rubric.
Method details — Here, the teacher was asked to perform
an in-depth review of the code, indicate the perceived level
of the code for each criterion, and provide elaborate written
feedback, pointing out specific problems by referencing the
code. The teacher was interviewed by first asking about each
box in the rubric in particular detail, and then discussing the
feedback that was written in relation to the rubric assessment.
Resulting changes All criteria of the rubric were used for
all assignments. Not all levels were used for all criteria, es-
pecially the lowest and highest level. For names, the “clear
word boundaries” needed clarification in the previous round
and again in this round; this led us to rephrase as “consistent
use of casing”, referring to the common parlance of “camel
casing”. For headers, it was left implicit that header com-
ments are generally required to be present; this has been
made implicit in the new version; also, the lack of accuracy

http://stgm.nl/quality

in level 2 was made explicit. A lack of consistency between
the headers and comments criteria was noted, and both were
changed to require correct spelling and consistent use of nat-
ural languages in all but the lowest level. For comments, the
phrasing “comments highlight important decisions” required
some explanation; to make the criterion better understand-
able, we changed this to the slightly more abstract“comments
explain code”. For layout, the amount of lines in“lines are too
long to read” was not clear, as it seemed to be a very strict
statement; we changed it to specify “generally too long to
read”. For layout, it was noted that positioning of elements is
not only supposed to be consistent, but also in line with plat-
form conventions (e.g. in Swift, member variables connected
to the user interface should be at the top of a class); this
requirement was added to the fourth level to reflect the fact
that this asks for some initiative and research by the student.
For formatting, the phrasing “differences and similarities” was
not clear; it was changed to state that similar parts of code
should be similarly formatted (i.e., consistency). For flow, it
was not clear that “exceptions” could point to any kind of
exception, not only the exception handling feature of some
languages; to broaden the applicability, the word “jumps”
was added. For flow, a clarification was added for the highest
level, because it was not immediately clear how to link it to
other levels. For idiom, based on the assignment at hand,
the use of library functionality seemed to be a higher level of
achievement than an appropriate choice of control structues;
it was moved up one level. For expressions, a clarification
was needed that long expressions can be seen as a variant
of complex expressions. For decomposition, a clarification
was added that sharing variables between routines can be
contrasted to using paramenters. For modularization, the
same phrasing as in decomposition was added, marking a
lack of trying as problematic. For modularization, the word
“subject” needed clarification, and the more common term
“responsibilities” was introduced instead. For modularization,
in level three, the word “somewhat” was added to convey a
more lenient mode of assesment.

5. DISCUSSION
In the previous section we have documented the changes
made during the development of the rubric. Although we
based these changes on interactions with a limited amount
of teachers, we already observe some patterns that may be
translated into design principles, to be used for designing
new versions of the rubric. Below, we group the observed
patterns into four areas of interest.

Abstractions
We note that condensing all information in the code quality
model for use in the rubric sometimes leads to unclear gen-
eralizations or missing concepts. In some cases, the levels
of certain subcriteria needed to be amended. Some subcri-
teria were moved to different criteria in order to better fit
the mental models of the teachers. One criterion was even
split into two: the criterion had already been formulated
as two virtually separate parts, separated by a semicolon.
There was also one instance of a missing subcriterion (casing).
Evaluating with more teachers and finding common patterns
seems to be needed to improve on the choice of abstractions
in the rubric.

Goals
Criteria in the model are linked to certain goals. During
the design iterations, it appeared that making these goals
explicit helped teachers’ understanding of the rubric. We
added several explicit goals during the design iterations:
“consistency” in, for example, the use of casing; “convention”
as it applies to layout; and the “lack of trying” that is often
(implicitly) part of the lowest achievement level. There is
a clear opportunity in drawing explicit parallels between
the goals in different criteria by choosing similar words to
describe these. For example, it seems to be possible to
categorize goals as either optimizing or maximizing. For
example, decomposition asks for subtle optimization, not
the creation of a limitless amount of tiny methods, while
formatting aims to follow the structure of the program as
much as possible.

Terminology
In several cases, descriptions in the rubric did not resonate
with the participants. Two variants were found. The first
concerned terminology that is too contrived and not clearly
linked with the domain: “clear word boundaries” was too
text-technical, while programmers call this “casing”. The
other variant concerned cases where the chosen terms seemed
to point at specific instances, where a more general con-
cept was intended; for example where the use of “exceptions”
was changed to specify “exceptions and jumps”. Creating a
general or local glossary of common terminology in introduc-
tory courses, or simply comparing the rubric to other course
materials, should contribute to a better choice of words.

Phrasing
In many cases, the phrasing used in the rubric was not
explicit or precise enough. Teachers appeared to need more
guidance to make better decisions. In several cases, key
words were added to the descriptions in order to make them
more recognizable. Sometimes they signaled a contrast, or
added precision. There were some examples where we felt
the need to soften the boundaries between levels somewhat,
because interpretation appeared to be overly strict. We did
this by adding moderating words, such as “generally” for lines
that are too long. The rubric has explicit instructions that
level 1 features (that is to say, problems) generally shouldn’t
be present in work of level 2. There was a tendency to
make this explicit in the rubric itself by adding statements
in all relevant level descriptors. For example, for headers we
explicitly added their required presence to levels 2–4, while
earlier, only their absence was stated at the lowest level.
Doing this systematically for all criteria seems to be a good
way to bring clarity and consistency to the rubric.

6. CONCLUSIONS AND FUTURE WORK
We have created the first version of a rubric that is based
on a model of code quality as it applies to introductory
programming courses. The rubric seems to be reasonably
complete, given that we tested with several different types
of programming assignments, while no substantial parts of
code quality appeared to be missing. This provides evidence
for the content validity of the rubric. For construct validity,
we see that many different kinds of changes were made to
the rubric in the three iterations: at the current stage of
development, this is still a weak point. Finding important

design aspects and principles should help redesign the rubric
more systematically and help understand the nature of good
abstractions. This work describes a first set of candidate
design principles for that purpose.

There are other aspects of the rubric’s quality that we
did not study. Criterion validity should show that student
performance would translate to an outside setting. Although
part of this stems from the fact that the rubric is generated
from a generic model of code quality (and based on profes-
sional norms), performance in this respect could be tested by
using the rubric with professional software projects and com-
paring to expert assessment. Apart from that, Messick [13]
has proposed a more fine-grained perspective on validity of
rubrics, and this should be taken into account as the rubric
matures. Finally, reliability of the rubric is an especially
important evaluative criterion. In contrast to validity, the
rubric’s interrater agreement can be tested statistically and
serve as evidence for the actual performance of the tool, and
at the same time point out weak aspects. This can be tested
as soon as improved versions of the rubric will be used in
class.

7. REFERENCES
[1] Heidi Goodrich Andrade. Teaching with rubrics: the

good, the bad, and the ugly. College Teaching,
53(1):27–31, 2005.

[2] Katrin Becker. Grading programming assignments
using rubrics. ACM SIGCSE Bulletin, 35(3):253–253,
June 2003.

[3] Veronica Cateté, Erin Snider, and Tiffany Barnes.
Developing a rubric for a creative CS Principles lab. In
Proceedings of the 2016 ACM Conference on
Innovation and Technology in Computer Science
Education, ITiCSE ’16, pages 290–295, New York, NY,
USA, 2016. ACM.

[4] Charles R Cooper. Holistic evaluation of writing. In
Charles R Cooper and Lee Odell, editors, Evaluating
Writing: Describing, Measuring, Judging. National
Council of Teachers of English, Urbana, Illinois, 1977.

[5] R. Wayne Hamm, Kenneth D. Henderson, Jr.,
Marilyn L. Repsher, and Kathleen M. Timmer. A tool
for program grading: The Jacksonville University scale.
SIGCSE Bulletin, 15(1):248–252, February 1983.

[6] John Hattie and Helen Timperley. The power of
feedback. Review of Educational Research,
77(1):81–112, 2007.

[7] James W Howatt. On criteria for grading student
programs. ACM SIGCSE Bulletin, 26(3):3–7, 1994.

[8] Anders Jonsson. Rubrics as a way of providing
transparency in assessment. Assessment & Evaluation
in Higher Education, 39(7):840–852, 2014.

[9] Anders Jonsson and Gunilla Svingby. The use of
scoring rubrics: reliability, validity and educational
consequences. Educational Research Review,
2(2):130–144, 2007.

[10] Barbara Kitchenham and Shari Lawrence Pfleeger.
Software quality: the elusive target. IEEE software,
13(1):12–21, 1996.

[11] Anastasiya A. Lipnevich, Leigh N. McCallen,
Katharine Pace Miles, and Jeffrey K. Smith. Mind the
gap! Students’ use of exemplars and detailed rubrics as
formative assessment. Instructional Science,

42(4):539–559, 2014.

[12] Samuel Messick. The interplay of evidence and
consequences in the validation of performance
assessments. Educational Researcher, 23(2):13–23, 1994.

[13] Samuel Messick. Validity of performance assessments.
In Gary W Phillips, editor, Technical Issues in
Large-Scale Performance Assessment. U.S. Department
of Education, 1996.

[14] Barbara M Moskal and Jon A Leydens. Scoring rubric
development: validity and reliability. Practical
assessment, research & evaluation, 7(10):1–11, 2000.

[15] Ernesto Panadero and Anders Jonsson. The use of
scoring rubrics for formative assessment purposes
revisited: a review. Educational Research Review,
9(0):129 – 144, 2013.

[16] Tjeerd Plomp and Nienke Nieveen. An introduction to
educational design research. In Proceedings of the
Seminar Conducted at the East China Normal
University [Z]. Shanghai: SLO-Netherlands Institute for
Curriculum Development, 2007.

[17] Thomas Reeves. Design research from a technology
perspective. In Jan van den Akker, Koeno Gravemeijer,
Susan McKenney, and Nienke Nieveen, editors,
Educational design research, pages 52–66. Routledge,
2006.

[18] Eric Roberts, John Lilly, and Bryan Rollins. Using
undergraduates as teaching assistants in introductory
programming courses: an update on the Stanford
experience. In Proceedings of the Twenty-sixth SIGCSE
Technical Symposium on Computer Science Education,
SIGCSE ’95, pages 48–52, New York, NY, USA, 1995.
ACM.

[19] D. Royce Sadler. The origins and functions of
evaluative criteria. Educational Theory, 35(3):285–297,
1985.

[20] D. Royce Sadler. Formative assessment and the design
of instructional systems. Instructional science,
18(2):119–144, 1989.

[21] Lon Smith and Jose Cordova. Weighted primary trait
analysis for computer program evaluation. Journal of
Computing Sciences in Colleges, 20(6):14–19, June
2005.

[22] Martijn Stegeman, Erik Barendsen, and Sjaak Smetsers.
Towards an empirically validated model for assessment
of code quality. In Proceedings of the 14th Koli Calling
International Conference on Computing Education
Research, pages 99–108. ACM, 2014.

[23] Briana E. Crotwell Timmerman, Denise C. Strickland,
Robert L. Johnson, and John R. Payne. Development
of a ‘universal’ rubric for assessing undergraduates’
scientific reasoning skills using scientific writing.
Assessment & Evaluation in Higher Education,
36(5):509–547, 2011.

[24] Arto Vihavainen, Matti Paksula, and Matti
Luukkainen. Extreme apprenticeship method in
teaching programming for beginners. In Proceedings of
the 42Nd ACM Technical Symposium on Computer
Science Education, SIGCSE ’11, pages 93–98, New
York, NY, USA, 2011. ACM.

[25] Barbara E. Walvoord and Virginia Johnson Anderson.
Effective grading: a tool for learning and assessment in
college. Wiley, 2011.

	Introduction
	Feedback and rubrics
	Rubric design principles
	Rubric quality

	Method
	Rubric design
	Discussion
	Conclusions and future work
	References

